INVASION AND INTOXICATION

Dr. Ahmed Hasan

Definition

"Invasion" is the term commonly used to describe the entry of bacteria into host cells, implying an active role for the organisms and a passive role for the host cells. In many infections, the bacteria produce virulence factors that influence the host cells, causing them to engulf (ingest) the bacteria.

Listeria monocytogenes

from the monocytogenes L environment is ingested in food. Presumably, the bacteria adhere to and invade the intestinal mucosa, reach the bloodstream, and disseminate. A protein, internalin, has a primary role in this process. The engulfment process, movement within a cell and movement between cells, requires actin polymerization to propel the bacteria

Legionella pneumophila

infects pneumophila Legionella macrophages pulmonary and causes pneumonia. Adherence of the legionellae to the macrophage induces formation of a long, thin pseudopod which then coils around the bacteria, forming a vesicle (coiling phagocytosis). The vesicle remains intact, phagolysosome fusion is inhibited, and the bacteria multiply within the vesicle.

Neisseria Gonorrhea

N gonorrhoeae uses pili as primary adhesins and **opacity associated proteins (Opa)** as secondary adhesins to host cells. Certain Opa proteins mediate adherence to polymorphonuclear cells. Some gonococci survive after phagocytosis by these cells.

Toxins

Property	Exotoxin	Endotoxin
Source	Certain G+ and G-	Cell wall of G-
Secreted from Bacteria	Yes	No
Chemistry	Polypeptide	Lipopolysaccharides
Location of Genes	Plasmid or bacteriophage	Bacterial chromosome
Toxicity	High (fatal dosage at 1ug)	Low (fatal dose at >100ug)
Clinical Effects	Various	Fever shock
Mode of Action	Various	TNF and IL-1
Antigenicity _	Induces high-titer antibodies called antitoxins	Poorly antigenic
Vaccines	Toxoids used as vaccines	No toxoids, no vaccines
Heat Stability	Destroyed rapidly at 60C (except	Stable at 100C for 1 hr
1	staphylococcal enterotoxin)	
Typical Diseases	Tetanus, botulism, diphtheria	Meningococcemia, Sepsis by G- rods

Corynebacterium diphtheria

C diphtheriae is a gram-positive rod that can grow on the mucous membranes of the upper respiratory tract or in minor skin wounds. Strains of *C diphtheriae* that carry a temperate bacteriophage with the structural gene for the toxin are toxigenic and produce **diphtheria toxin** and cause **diphtheria**.

clostridium tetani toxin

Staphylococcus aureus toxin

S aureus strains growing on mucous membranes (eg, the vagina in association with menstruation), or in wounds, elaborate toxic shock syndrome toxin-1 (TSST-1), which causes toxic shock syndrome. The illness is characterized by shock, high fever, and a diffuse red rash that later desquamates; multiple other organ systems are involved as well. TSST-1 is a super antigen and stimulates lymphocytes to produce large amounts of IL-1 and TNF.